Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Microbiol Spectr ; 10(5): e0322222, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2029477

ABSTRACT

Rapid identification and continuous surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are critical for guiding the response to the COVID-19 pandemic. Whole-genome sequencing (WGS) is a preferred tool for this aim, but many laboratories suffer from a lack of resources to support population-level sequencing. Here, we describe two PCR strategies targeting spike protein mutations to identify the Alpha, Delta, and Omicron variants. Signature mutations were selected using a dedicated bioinformatic program. The selected mutations in Alpha and Delta variants were detected using multicolor melting curve analysis (MMCA). Thirty-two mutations of the Omicron variant were targeted using the MeltArray approach in one reaction, which was able to detect the Omicron subvariants BA.1, BA.2, BA.3, and BA.4/5. The limits of detection varied from five to 50 copies of RNA templates/reactions. No cross-reactivity was observed with nine other respiratory viruses, including other coronaviruses. We validated the MMCA and MeltArray assays using 309 SARS-CoV-2 positive samples collected at different time points. These assays exhibited 98.3% to 100% sensitivity and 100% specificity compared with WGS. Multiplexed real-time PCR strategies represent an alternative tool capable of identifying current SARS-CoV-2 VOCs, adaptable for emerging variants and accessible for laboratories using existing equipment and personnel. IMPORTANCE Rapid detection and mutation surveillance of SARS-CoV-2 VOCs is crucial for COVID-19 control, management, and prevention. We developed two rapid molecular assays based on the real-time PCR platform to identify important variants of concern, including the Omicron variant with a large number of mutations. Signature mutations were selected by an R program. Then, MMCA assays were established for Alpha and Delta variants, and a MeltArray assay targeting 32 mutations was developed for Omicron variant. These multiplexed PCR assays could be performed in a 96-well real-time PCR instrument within 2.5 h, offering a high-throughput choice for dynamic monitoring of SARS-CoV-2 VOCs in a standard microbiology laboratory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Real-Time Polymerase Chain Reaction , RNA, Viral/genetics , RNA, Viral/analysis , Pandemics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/diagnosis , Mutation
2.
Breast ; 59: 102-109, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1283953

ABSTRACT

BACKGROUND: The COVID-19 pandemic is a significant worldwide health crisis. Breast cancer patients with COVID-19 are fragile and require particular clinical care. This study aimed to identify the clinical characteristics of breast cancer patients with COVID-19 and the risks associated with anti-cancer treatment. METHODS: The medical records of breast cancer patients with laboratory-confirmed COVID-19 were collected among 9559 COVID-19 patients from seven designated hospitals from 13th January to 18th March 2020 in Hubei, China. Univariate and multivariate analyses were performed to assess risk factors for COVID-19 severity. RESULTS: Of the 45 breast cancer patients with COVID-19, 33 (73.3%) developed non-severe COVID-19, while 12 (26.7%) developed severe COVID-19, of which 3 (6.7%) patients died. The median age was 62 years, and 3 (6.7%) patients had stage IV breast cancer. Univariate analysis showed that age over 75 and the Eastern Cooperative Oncology Group (ECOG) score were associated with COVID-19 disease severity (P < 0.05). Multivariate analysis showed that patients who received chemotherapy within 7 days had a significantly higher risk for severe COVID-19 (logistic regression model: RR = 13.886, 95% CI 1.014-190.243, P = 0.049; Cox proportional hazards model: HR = 13.909, 95% CI 1.086-178.150, P = 0.043), with more pronounced neutropenia and higher LDH, CRP and procalcitonin levels than other patients (P < 0.05). CONCLUSIONS: In our breast cancer cohort, the severity of COVID-19 could be associated with baseline factors such as age over 75 and ECOG scores. Chemotherapy within 7 days before symptom onset could be a risk factor for severe COVID-19, reflected by neutropenia and elevated LDH, CRP and procalcitonin levels.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , COVID-19/diagnosis , Neutropenia/etiology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Breast Neoplasms/complications , Breast Neoplasms/mortality , C-Reactive Protein , China/epidemiology , Female , Humans , L-Lactate Dehydrogenase/blood , Middle Aged , Neutropenia/epidemiology , Pandemics , Procalcitonin/blood , Retrospective Studies , Risk Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL